北京建筑大学理学院;北京建筑大学大数据建模理论与技术研究所;
遥感图像变化检测(remote sensing image change detection.RSICD)的目标是检测双时图像之间发生变化的区域.为了准确获取感兴趣的差异特征图,本文提出了差异特征补偿Transformer(differential feature compensation Transformer, DFCT)模型来解决RSICD问题,设计了差异特征补偿分支来有效地学习差异特征.为了更好地连接高级和低级特征,引入了特征融合模块.具体而言,首先使用共享骨干网络来提取给定图像对的特征图.然后,将共享骨干网络输出的特征映射为新的表征集,连接起来输入到Transformer编码器以获得每个时态的细粒度特征图.最后特征融合模块利用差异特征补偿分支补充双增强特征的粗粒度特征信息,将该特征与分支得到的差异补偿特征进行融合.最后,通过预测头获得精确的变化图.该方法在3个数据集上的F1分数分别达到了93.46%,92.25%和96.27%,交并比分别达到了87.71%,85.62%和92.82%,与其余10种当前主流方法相比均为最优,实验结果证明了该方法的有效性.
169 | 0 | 58 |
下载次数 | 被引频次 | 阅读次数 |
[1] CHEN H,QI Z P,SHI Z W.Remote Sensing Image Change Detection with Transformers[J].Transactions on Geoscience and Remote Sensing,2021,60:1-14.doi:10.1109/TGRS.2021.3095166
[2] BANDARA W G C,PATELV M.A Transformer-based Siamese Network for Change Detection[C]//IEEE.IGARSS 2022-IEEE International Geoscience and Remote Sensing Symposium.Kuala Lumpur:IEEE,2022:207-210.doi:10.1109/IGARSs46834.2022.9883686
[3] ZHANG C,WANG L J,CHENG S L,et al.SwinSUNet:Pure Transformer Network for Remote Sensing Image Change Detection[J].Transactions on Geoscience and Remote Sensing,2022,60:1-13.doi:10.1109/TGRS.2022.3160007
[4] LI L,LI X,ZHANG Y,et al.Change Detection for High-resolution Remote Sensing Imagery Using Object-oriented Change Vector Analysis Method[C]//IEEE.2016 IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Beijing:IEEE,2016:2873-2876.
[5] LAMBIN E F,STRAHLERS A H.Change-vector Analysis in Multitemporal Space:A Tool to Detect and Categorize Land-cover Change Processes Using High Temporal-resolution Satellite Data[J].Remote Sensing of Environment,1994,48(2):231-244.doi:10.1016/0034-4257(94)90144-9
[6] PEIMAN R.Pre-classification and Post-classification Change-detection Techniques to Monitor Land-cover and Land-use Change Using Multi-temporal Landsat imagery:A Case Study on Pisa Province in Italy[J].International Journal of Remote Sensing,2011,32(15):4365-4381.doi:10.1080/01431161.2010.486806
[7] NIELSEN A A,CONRADSEN K,SIMPSON J J.Multivariate Alteration Detection(MAD) and MAF Postprocessing in Multispectral,Bitemporal Image Data:New Approaches to Change Detection Studies[J].Remote Sensing of Environment,1998,64(1):1-19.doi:10.1016/S0034-4257(97)00162-4
[8] CELIK T.Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering[J].IEEE Geoscience & Remote Sensing Letters,2009,6(4):772-776.doi:10.1109/LGRS.2009.2025059
[9] LU P,QIN Y Y,LI Z B,et al.Landslide Mapping from Multi-sensor Data through Improved Change Detection-based Markov Random Field[J].Remote Sensing of Environment,2019,231:111235.doi:10.1016/j.rse.2019.111235.
[10] PU R L,GONG P,TIAN Y,et al.Invasive Species Change Detection Using Artificial Neural Networks and CASI Hyperspectral Imagery[J].Environmental Monitoring & Assessment,2008,140:15-32.doi:10.1007/s10661-007-9843-7
[11] NIELSEN A A.The Regularized Iteratively Reweighted Mad Method for Change Detection in Multi- and Hyperspectral Data[J].IEEE Transactions on Image Processing,2019,16(2):463-478.doi:10.1109/TIP.2006.888195
[12] LI H C,CELIK T,LONGBOTHAM N,et al.Gabor Feature Based Unsupervised Change Detection of Multitemporal SAR Images Based on Two-level Clustering[J].IEEE Geoscience & Remote Sensing Letters,2015,12(12):2458-2462.doi:10.1109/LGRS.2015.2484220
[13] GONG M G,ZHOU Z Q,MA J J.Change Detection in Synthetic Aperture Radar Images Based on Image Fusion and Fuzzy Clustering[J].IEEE Transactions on Image Processing,2011,21(4):2141-2151.doi:10.1109/TIP.2011.2170702
[14] MOSER G,SERPICO S B.Generalized Minimum-error Thresholding for Unsupervised Change Detection from SAR Amplitude Imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(10):2972-2982.doi:10.1097/MPH.0b013e31802dc58f
[15] LEBEDEV M A,VIZILTER Y V,VYGOLOV O V,et al.Change Detection in Remote Sensing Images Using Conditional Adversarial Networks[C]//ISPRS.The International Archives for Photogrammetry,Remote Sensing and Spatial Information Sciences,Volume XLII-2.Riva del Garda:ISPRS,2018:565-571.doi:10.5194/isprs-archives-XLII-2-565-2018
[16] PAPADOMANOLAKI M,VERMA S,VAKALOPOULOU M,et al.Detecting Urban Changes with Recurrent Neural Networks from Multitemporal Sentinel-2-Data[C]//IEEE.IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium Yokohama:IEEE,2019:214-217.doi:10.1109/IGARSS.2019.8900330
[17] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An Image Is Worth 16×16 Words:Transformers for Image Recognition at Scale[C]//ICLR.9th International Conference on Learning Representations.Online:ICLR2021,2021.
[18] DAUDT R C,LE S B,BOULCH A.Fully Convolutional Siamese Networks for Change Detection[C]//IEEE.2018 25th IEEE International Conference on Image Processing(ICIP).Athens:IEEE,2018:4063-4067.doi:10.1109/ICIP.2018.8451652
[19] PENG D F,ZHANG Y J,GUAN H Y.End-to-end Change Detection for High Resolution Satellite Images Using Improved UNet++[J].Remote Sensing,2019,11(11):1382.doi:10.3390/rs11111382
[20] FANG S,LI K Y,SHAO J Y,et al.SNUNet-CD:A Densely Connected Siamese Network for Change Detection of VHR Images[J].IEEE Geoscience and Remote Sensing Letters,2022,19:1-5.doi:10.1109/LGRS.2021.3056416
[21] LI Q Y,ZHONG R F,DU X,et al.TransUNetCD:A Hybrid Transformer Network for Change Detection in Optical Remote-sensing Images[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-19.doi:10.1109/TGRS.2022.3169479
[22] VASWANI A,SHAZEER N,PARMAR N,et al.Attention Is All You Need[C]//NIPS.Proceedings of the 31st Conference on Neural Information Processing Systems(NIPS 2017).Long Beach:NIPS,2017:6000-6010.
[23] WANG W H,XIE E Z,LI X,et al.Pyramid Vision Transformer:A Versatile Backbone for Dense Prediction without Convolutions[C]//IEEE.2021 IEEE/CVF International Conference on Computer Vision(ICCV).Montreal:IEEE,2021:548-558.doi:10.1109/ICCV48922.2021.00061
[24] LEE J,LEE Y,KIM J,et al.Set Transformer:A Framework for Attention-based Permutation-Invariant Neural Networks[C]//PMLR.Proceedings of the 36th International Conference on Machine Learning.Long Beach:PMLR,2019.
[25] JIANG B,LUO S X,WANG X,et al.AmatFormer:Efficient Feature Matching via Anchor Matching Transformer[J].Transactions on Multimedia,2024,26:1504-1515.doi:10.1109/TMM.2023.3282546
[26] LIU Y,PANG C,ZHAN Z Q,et al.Building Change Detection for Remote Sensing Images Using a Dual-task Constrained Deep Siamese Convolutional Network Model[J].Geoscience and Remote Sensing Letters,2021,18(5):811-815.doi:10.1109/LGRS.2020.2988032
[27] ZHANG C X,YUE P,TAPETE D,et al.A Deeply Supervised Image Fusion Network for Change Detection in High Resolution Bi-Temporal Remote Sensing Images[J].ISPRS Journal of Photogrammetry and Remote Sensing,2020,166:183-200.doi:10.1016/j.isprsjprs.2020.06.003
[28] JIANG H W,HU X Y,Li Kun,et al.PGA-SiamNet:Pyramid Feature-based Attention-guided Siamese Network for Remote Sensing Orthoimagery Building Change Detection [J].Remote Sensing,2020,12(3):484.doi:10.3390/rs12030484
[29] CHENG G,WANG G X,HAN J W.Isnet:Towards Improving Separability for Remote Sensing Image Change Detection[J].Transactions on Geoscience and Remote Sensing,2022,60:1-11.doi:10.1109/TGRS.2022.3174276
[30] XU Y F,ZHANG Q M,ZHANG J,et al.ViTAE:Vision Transformer Advanced by Exploring Intrinsic Inductive Bias[C]∥NIPS.35th Conference on Neutral Information Processing systems(NeurlIPS 2021).Online:NIPS,2021:28522-28535.
[31] WANG D,ZHANG J,DU B,et al.An Empirical Study of Remote Sensing Pretraining[J].Transactions on Geoscience and Remote Sensing,2023,61:1-20.doi:10.1109/TGRS.2022.3176603
[32] ZHANG K,ZHAO X,ZHANG F,et al.Relation Changes Matter:Cross-temporal Difference Transformer for Change Detection in Remote Sensing Images[J].IEEE Transactions on Geoscience and Remote Sensing,2023,61:1-15.doi:10.1109/TGRS.2023.3281711
[33] WANG W,TAN X A,ZHANG P,et al.A CBAM Based Multiscale Transformer Fusion Approach for Remote Sensing Image Change Detection[J].Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:6817-6825.doi:10.1109/JSTARS.2022.3198517
[34] LIU M X,CHAI Z Q,DENG H J,et al.A CNN-transformer Network with Multiscale Context Aggregation for Fine-grained Cropland Change Detection[J].Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:4297-4306.doi:10 .1109/JSTARS.2022.3177235
[35] LI Z L,TANG C,LI X J,et al.Towards Accurate and Reliable Change Detection of Remote Sensing Images via Knowledge Review and Online Uncertainty Estimation[J/OL].arXiv,2305.19513[2024-06-07]https://doi.org/10.48550/arXiv.2305.19513.
[36] JIANG B,WANG Z T,WANG X X,et al.VcT:Visual Change Transformer for Remote Sensing Image Change Detection[J].Transactions on Geoscience and Remote Sensing,2023,61:1-14.doi:10.1109/TGRS.2023.3327139
[37] HE K M,ZHANG X Y,REN S Q,et al.Deep Residual Learning for Image Recognition[C]//IEEE.2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas:IEEE,2016:770-778.doi:10.1109/CVPR.2016.90
[38] ZHENG Z,ZHONG Y F,TIAN S Q,et al.Changemask:Deep Multi-task Encoder-transformer-decoder Architecture for Semantic Change Detection[J].ISPRS Journal of Photogrammetry and Remote Sensing,2022,183:228-239.doi:10.1016/j.isprsjprs.2021.10.015
[39] DONG S J,Wang L B,DU B,et al.ChangeCLIP:Remote Sensing Change Detection with Multimodal Vision-language Representation Learning[J].Photogrammetry and Remote Sensing,2024,208:53-69.doi:10.1016/j.isprsjprs.2024.01.004
[40] CHEN H,SHI Z W.A Spatial-temporal Attention-based Method and a New Dataset for Remote Sensing Image Change Detection[J].Remote Sensing,2020,12(10):1662.doi:10.3390/rs12101662
[41] JI S P,WEI S Q,LU M.Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite Imagery Data Set[J].IEEE Transactions on Geoscience and Remote Sensing,2018,57(1):574-586.doi:10.1109/tgrs.2018.2858817.
基本信息:
DOI:10.13763/j.cnki.jhebnu.nse.202401010
中图分类号:TP751
引用信息:
[1]孙芸倩,何强,陈琳琳.基于差异特征补偿Transformer的遥感图像变化检测[J].河北师范大学学报(自然科学版),2024,48(06):541-551.DOI:10.13763/j.cnki.jhebnu.nse.202401010.
基金信息:
国家自然科学基金(62072024,12301581); 北京市教育委员会科学研究计划项目(KM202110016001,KM202210016002)